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Summary
In this white paper, we aim to define generations of machine 
learning and to explain the maturity levels of artificial 
intelligence (AI) and machine learning (ML) that are being 
applied to cybersecurity today. In addition, the paper seeks 
to explain that while a great deal of progress has been 
made in the evolution of machine learning’s application to 
cybersecurity challenges, there remains an immense amount 
of opportunity for innovation and advancement in the field, 
and we expect the sophistication of applications of machine 
learning to continue to evolve over time.

This white paper is organized into sections that provide the 
following information:

• An introduction which briefly summarizes the context of 
machine learning’s application within cybersecurity, and 
the case for an official categorization of cybersecurity 
machine learning models into generations

• A review of key machine learning concepts and 
considerations when drawing distinctions between 
generations

• Definitions for five distinct cybersecurity machine  
learning generations

• The greater implications of this machine learning 
generational framework

• A brief conclusion

Introduction
The Defense Advanced Research Projects Agency (DARPA) 
has defined AI in three foundational ways, referring to these 
as the Three Waves of AI. 

The first wave is handcrafted knowledge, which defines rules 
that humans use to carry out certain functions, and from 
which computers can learn to automatically apply these rules 
to create logical reasoning. However, within this first wave 
there is no learning applied to higher levels. One example of 
cybersecurity inside this first wave is the DARPA Cyber Grand 
Challenge. 

The second wave is statistical learning. Often used in self-
driving cars, smartphones, or facial recognition, this wave of 
AI uses machine learning to perform probabilistic decision 
making on what it should or should not do. In this second 
wave, the systems are good at learning, but their weakness 
lies in their ability to perform logical reasoning. In other words, 
the systems classify and predict data, but don’t understand 
the context. 

This is where the third wave, known as contextual adaptation, 
comes into play. In this wave, the systems themselves 
construct explanatory models for the real world itself. In the 
third wave, the systems should be able to describe exactly 
why the characterization occurred just as a human would.

Machine learning has been quickly adopted in cybersecurity 
for its potential to automate the detection and prevention 
of attacks, particularly for next-generation antivirus (NGAV) 
products. ML models in NGAV have fundamental advantages 
compared to traditional AV, including the higher likelihood of 
identifying novel, zero-day attacks and targeted malware, an 
increased difficulty of evasion, and continued efficacy during 
prolonged offline periods. 

Most attempts to apply ML and AI to cybersecurity fall into 
DARPA’s first wave, handcrafted knowledge, using human 
defined rules, and defined patterns. A scant few cybersecurity 
technologies can claim involvement, much less maturity, in 
DARPA’s second wave, statistical learning. 

The first wave ML models inevitably suffer from high false 
positive rates and can be easily bypassed. Since there are 
now several iterations of ML applications for AV, it is no longer 
sufficient to differentiate only between the current version or 
release of an AV, and the forthcoming one. Instead, the time 
has come to provide a high-level description of the evolving 
generations of ML both as it has been, and will be, applied to 
cybersecurity in the future.

In this paper, we explore the sub-categories of machine 
learning generations inside DARPA’s second wave, statistical 
learning. We aim to explain the maturity levels of AI 
represented in applications within cybersecurity today, and 
how we expect them to evolve over time.

Concepts and Considerations
This section explains the terms and concepts employed in 
this document that assist in drawing distinctions between 
generations of ML models, and also provides commentary on 
why these concepts are relevant to security.

Runtime
Machine learning algorithms universally involve two 
fundamental steps:

• Training, when a model learns from a data set of 
known samples

• Prediction, when a trained model makes an educated 
guess about a new, unknown sample

The training step is the much more intense computational 
operation — modern deep neural networks can take 
months to train even on large clusters of high-performance 
cloud servers. Once a model has been trained, prediction is 
comparatively straightforward, although prediction often 
still requires significant memory and CPU usage. To train 
a classifier, samples from the input dataset must have 
associated labels (e.g. malicious or non-malicious).

Runtime is the environment where training or prediction 
could occur: local, e.g. on endpoint, or remote, e.g. in cloud. 
The runtime for each ML step informs how quickly a model 
can be updated with new samples, the impacts of decision 

https://www.darpa.mil/about-us/darpa-perspective-on-ai
https://www.cybergrandchallenge.com/
https://www.cybergrandchallenge.com/
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making, and dependence on resources such as CPU, memory, 
and IO. For supervised models, note that labels must be 
available during training, so training can only occur where 
labels are available. In practice, training is typically done in a 
cluster of distributed servers in the cloud. Prediction is more 
common in the cloud as well, but increasingly performed 
locally. Distributed training on local user or customer devices 
is an emerging technology. Although there are major possible 
benefits, including reduced IO and protection of sensitive data, 
there are many challenges such as heterogeneous resources, 
unreliable availability, and slower experimental iterations.

Features
The set of features, or feature space, specifies precisely what 
properties of each example are taken into consideration by a 
model. For portable executable (PE) files, the feature set could 
include basic statistics such as file size and entropy, as well 
as features based on parsed sections of the PE, for example, 
the names of each entry in the section table. We could include 
the base-2 logarithm of file size as another derived feature. 
Some features could be extracted conditionally based on 
other features; other features could represent combinations. 
The space of possible features is very large, considering that 
there are innumerable transformations that can be applied 
to the features. 

The features are critical to any ML model because they 
determine what and how information is exposed. Besides 
the important question of what information to include, it 
also matters how to encode the information. The process 
of creating model-amenable features is called feature 
engineering. Some models are more sensitive than others to 
how features are encoded. Although it is often tempting to 
provide as many features as possible, there are disadvantages 
in using too many features: greater risking of overfitting, 
higher resource consumption, and possibly more vulnerability 
to adversarial attacks. The efficacy, interpretability, and 
robustness of the model all hinge on the features.

Data sets
The data used to train and evaluate the model fundamentally 
and hugely impacts its performance. If the data used to train 
the model are not representative of the real world, then 
the model will fail to do well in the field. Labels for each 
sample, such as benign or malicious, are necessary for training 
classifiers. The labels need to be vetted carefully, since any 
mislabeling, also known as label noise, can bias the model. 
As more data is gathered, the labeled datasets must be 
continuously monitored to ensure consistency and ongoing 
hygiene. In practice, the data may come from a wide variety 
of sources. Each source must be evaluated for the degree of 
trust and reliability so that downstream uses can take these 
factors into account. 

A common problem which is present for many security 
applications is how to handle unbalanced data, w hich occurs 
when one label (benign) is much more common than others 
(malicious). Unbalanced labeled data can be mitigated by 
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Figure 1 — Four very different datasets, shown by points, which result in 
the same fitted predictive model, represented by each line. This famous 
set of datasets is known as Anscombe’s quartet. 

various modelling strategies, but ideally, there are many 
representative samples for each label. The feature set and 
dataset are closely related, since many features will be 
generated using the training set. The dataset also impacts 
crucial feature pre-processing, such as normalization, or 
weighting schemes, such as term frequency-inverse document 
frequency (TF-IDF).

For a sophisticated model, it’s necessary to have a very 
large dataset. However, it is easy to fall into the trap of 
assuming that a sufficiently large dataset will lead to better 
performance. While, in general, larger datasets enable 
training of more sophisticated models, a huge dataset does 
not guarantee performance. A good dataset should have a 
wide variety and should fairly represent the samples that a 
model might see when deployed. The desired variety can be 
represented quantitatively as rough balance in feature values 
among labeled examples.

Human Interaction
Models are often thought of as black boxes, but they need 
not be. Models which can support modes of interaction with 
people have several advantages. They can receive expert 
feedback more readily, which can be useful for improving 
both labels and features, and allowing the model to improve 
in otherwise difficult ways. Human confidence and trust in the 
model can be made more quickly when there is some way of 
understanding how the model decisions are made. 

Having methods for exploring the model can also help to 
validate the underlying data. Figure 1 shows Anscombe’s 
quartet, in which four very different input datasets yield 
precisely the same linear regression model. Based on 
the summary statistics and model parameters, the four 
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cases are practically indistinguishable. When plotted, it is 
immediately clear that only the upper-left quadrant model 
is fit appropriately to its dataset. The other models, with 
more dimensions and parameters, are much more difficult 
to explore and understand. However, without some type of 
human validation, it is likely that qualitative model or data 
issues could go quietly unnoticed, and lead to poor efficacy 
or vulnerabilities.

Supporting modes of human interaction is also important 
in cases where the model fails. If the model is a black box, it 
can be difficult to identify the cause of systematic modelling 
errors. Tools for inspecting and understanding the model 
enable troubleshooting and diagnostics. Such tools need to 
be carefully controlled and may not be integrated into the 
end product, since they leak intellectual property and could 
potentially expose vulnerabilities to adversaries.

Goodness of Fit
Some models better represent the real world better than 
others. When a model is oversimplified, it has poor efficacy 
but generalizes well to new data. These models are called 
“underfit”, in the sense that there is more information 
available to the model which it is not fully taking into account. 
Conversely, a model can memorize, or “overfit”. When 
overfitting, the model learns too much about the specific 
samples on which it was trained, but does not transfer its 
representation well to new samples in the real world.

In Figure 2, the dashed line represents the decision boundary 
of an overfit classifier for green vs. gray points. The green line 
represents an appropriate decision boundary. Although it does 
not classify perfectly on the shown points, its performance 
will be better for new points.

 

Figure 2 — Data points from two classes, each class indicated by its  
color. The two lines show alternative decision boundaries from 
hypothetical classifiers.

A well-fit model will maintain its validation performance after 
deployment. Concept drift is a related concept which occurs 
when there are nonstationary changes in the data over time, 
e.g. the set of PE files on endpoints changes from year to 
year. As the population of sample PE files change, the model 
should be prepared to adapt to the changes in the population 
it targets.

How Generations Are Defined
Cybersecurity machine learning generations are distinguished 
from one another according to five primary factors, which 
reflect the intersection of data science and cybersecurity 
platforms.

• Runtime: Where does the ML training and prediction 
occur (e.g. in the cloud, or locally on the endpoint)?

• Features: How many features are generated? How are 
they pre-processed and evaluated?

• Datasets: How is trust handled in the process of data 
curation? How are labels generated, sourced, and 
validated?

• Human Interaction: How do people understand the 
model decisions and provide feedback? How are models 
overseen and monitored?

• Goodness of Fit: How well does the model reflect the 
datasets? How often does it need to be updated? 

These factors enable us to separate cybersecurity technologies 
into five distinct generations of ML, each defined by its 
progression in each category. Typically, a productized model 
takes two to three years to advance from one generation 
to the next, and the majority of technologies that integrate 
machine learning will become trapped in the first or second 
generations. Only a few have entered the third generation, 
and that evolution was hard won after many lessons learned 
in the field. Graduating to the fourth and fifth generations 
will require substantially more research and development. 
The requirements of the domain applications in cybersecurity 
are quickly catching up to the state of the art in ML research, 
particularly in the areas of adversarial learning, active learning, 
federated learning, and model interpretability.

The following table summarizes the characteristics of the 
generations according to the achievement within the factors 
previously described. 
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Generation Runtime
Where do training and 

prediction occur?

Features
Characteristics, 

elements

Data sets
Sizes and label 

provenance

Interactivity
Human  

interpretability

Goodness of Fit
How well the model 
suits the real world

First • Cloud training

• Cloud prediction

• Over 1,000  
features

• Over 1M data 
examples

• Human labeled

• Human 
understands 
decisions

• Underfit, high 
false positive rate

Second • First generation 

• Local prediction

• Over 100,000 
features

• Over 100M data 
examples

• Human labeled, 
some heuristic 
labels

• Model struggles 
to explain 
decisions

• Overfit, 
misleading false 
positive rate

Third • Second generation

• Cloud enhanced 
models

• 1 to 3M features • Over 1B data 
examples

• Largely heuristic 
labeled

• Model provides 
understandable 
explanations

• Fit appropriately, 
accuracy metrics 
generalize

Fourth • Third generation 

• Local training

• Over 3M features Online learning • Model explains 
strategy, receives 
high-level 
feedback 

• Model fits current 
inputs as well as 
future inputs

Fifth • Fourth generation 

• Unsupervised 
local training

• Unlimited with 
semi-supervised 
discovery

Active learning • Human input 
optional; 
interpretable 
insights

• Model identifies 
and adapts to 
concept drift

The Greater Implications of Each 
Generation of Machine Learning
The table above lays out the distinguishing features of each 
generation. Each generation builds on the last one. The dataset 
size and number of features grows substantially in each 
generation. Below, we focus on the qualitative differences 
from each generation to the next, 

• First-Generation Machine Learning: Application of off-
the-shelf ML toolkits such as scikit-learn, using standard 
models. All good/bad labels are provided by human 
analysis, meaning the feature set is small, fixed, and 
picked by a human. These models cannot be deployed 
to endpoints. They typically result in high levels of false 
positives and will suffer from very limited efficacy. They 
are also easy to bypass.

• Second-Generation Machine Learning: Most labels are 
still applied manually, but at this stage, heuristics are 
used to supplement human labels. This application allows 
for local model predictions, but still requires cloud-
based training. The local model is a clone of the cloud 
model. Interpretation is provided by human descriptor 
methods, which are post-hoc and not truly connected to 

the model’s decision procedure. Models in this stage are 
typically overfit to training data. Although models in this 
class have some predictive power, they still need periodic 
updating to avoid suffering from concept drift.

• Third-Generation Machine Learning: The cloud model is 
more advanced, and complements and protects the local 
model. Decisions are explained by the model in a way that 
reflects its decision process. Models are evaluated and 
designed to be hardened against attacks. Concept drift is 
mitigated by great generalizability.

• Fourth-Generation Machine Learning: Models learn 
from local data, without needing to upload observations. 
Features are designed by strategic interactions between 
humans and models. New features and models are 
constantly evaluated by ongoing experiments. Humans 
can provide feedback to correct and guide the model. 
Most are robust to well-known ML attacks.

• Fifth-Generation Machine Learning: Supervision 
becomes optional. Models learn in a distributed, semi-
supervised environment. Human analysis is guided by 
model-provided insights. Models can be monitored and 
audited for tampering, and support deception capabilities 
for detecting ML attacks.

http://scikit-learn.org/stable/
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Conclusion
The application of machine learning to cybersecurity is still 
a very recent development in the industry (since circa 2013). 
As such, we are just beginning our journey to apply ML in an 
attempt to solve very challenging problems in the journey 
towards cyberprotection. As each ML advancement is made, 
future generations will only get better and better at providing 
all five areas of maturity (Runtime, Features, Datasets, Human 
Interaction, Goodness of Fit).

Hype around ML in cybersecurity has been driven in large part 
by two areas of application, which are respectively outside and 
inside of cybersecurity:

• State-of-the-art ML engineering by Google, Amazon, 
Facebook, and others, primarily targeting mass market 
applications, e.g. image and video, natural language, 
recommender systems, and self-driving cars

• Very simple, off-the-shelf ML applied to classical 
problems in cybersecurity

While ML has demonstrated some degree of applicability in a 
wide variety of domains, the adaptations to cybersecurity are 
still relatively young. The importance of cybersecurity merits 
novel research aimed at open problems in cybersecurity, and 
not just training a simple model on a cyber dataset.

Each generation represents a qualitative improvement over 
previous generations. Maturity has a direct impact on the value 
provided by ML because the changes are not just marginal 
improvements in efficacy, but rather represent leaps in the 
fundamental abilities of ML to detect and prevent attacks. 
The ML approach has quickly proven to have value, but the 
full defensive potential will only be developed by the more 
advanced generations of ML. 
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