
UNDER THE HOODIE
Lessons from a Season of
Penetration Testing

By Rapid7 Global Consulting

July 24, 2018

2

3

CONTENTS

Executive Summary ...5

Scoping Engagements .. 7

Internal versus External .. 7

The Time Box ..8

What’s at Stake? ...9

This One Time on a Pentest: PDLC Vigilance ...10

Vulnerabilities Exploited ... 13

This One Time on a Pentest: Scraping Memory With Heartbleed15

Misconfigurations Encountered ..17

This One Time on a Pentest: You Missed a Spot ..18

Credentials Captured .. 19

Identifying Privileged Credentials ..20

Methods of Capturing Credentials ...21

Deep Dive ..22

Three Most Common Password Patterns ..22

Numerical Patterns Emerge ...23

Extending Privilege..26

This One Time on a Pentest: The Perils of Password Reuse 27

Detection and Defense ... 29

Credential Management ...30

Vulnerability and Misconfiguration Management .. 31

Socializing Security ... 32

This One Time on a Pentest: Giving It All Away ... 33

Appendix ... 34

About Rapid7 ..40

4

5

EXECUTIVE SUMMARY

In 2017, Rapid7 launched the “Under the Hoodie” project to demystify the practice
of penetration testing by surveying those who are in the field and conducting the
investigations on what they most commonly see during client engagements. We
have renewed this approach in 2018 to continue providing visibility into this often
occult niche of information security. To this end, this paper presents the results
of 268 engagements (251 of which involved live, production network tests),
conducted from early September of 2017 through mid-June of 2018.

Rapid7 offers penetration testing services of all scopes and sizes, but in general,
we find that our customers prefer external penetration tests, where the simulated
attacker can only reach the target organization over the internet. Fifty-nine
percent of all penetration tests performed in the survey period were externally
based, where the targets tend to be internet-facing vectors such as web
applications, email phishing, cloud-hosted assets, and/or VPN exposure. External
penetration tests make sense for most organizations, given the preponderance
of internet-based attackers. However, we always advocate for a penetration
test that includes an internal component in order to understand the impact of
a compromise and to quantify the gaps in an organization’s defense-in-depth
strategy.

The three broad categories of compromise Rapid7 penetration testers pursue are
software vulnerabilities, network misconfigurations, and network credentials.

• Overall, Rapid7 penetration testers were able to exploit at least one
in-production vulnerability in 84% of all engagements. That figure rises to
96% of all internally-based penetration tests.

• In a similar vein, penetration testers were able to abuse at least one
network misconfiguration at a slightly lower rate of 80%, but among internal
assessments, a misconfiguration was leveraged in the investigator’s favor
96% of the time.

• Finally, at least one credential was captured in 53% of all engagements, and
86% of the time when looking purely at internal engagements.

Given these three basic areas of interest, penetration testers successfully gain
complete administrative control of the targeted organization’s network 67% of
the time when the internal LAN or WLAN is in scope.

This success rate and these proportions of internal versus external weaknesses
make intuitive sense to most people involved in the day-to-day work of
penetration testing. However, we should not be complacent in a belief that
penetration testers “always win” when they’re on the inside. We believe it’s
important to actually measure and publish the results of our penetration
testing practices in order to provide risk context to organizations when they’re
considering the results of their own penetration testing programs. It’s also
valuable to quantify penetration testing results in order to properly prioritize
what defensive strategies are most effective in detecting and defending against
actual breach attempts by “real” threat actors.

The rest of this paper will examine and explore the data gathered from our
most recent season of penetration testing, as well as provide anecdotes drawn
from real-world experiences in the field. We expect readers to come away from
these pages with a baseline understanding of how penetration testers help
organizations identify their own unique (and not-so-unique) IT risks.

6

In our 2016 study,
we found that only
21% of engagements
were purely internally
focused, whereas this
year’s nearly 32% figure
indicates more appetite
for these internal
assessments.

7

SCOPING ENGAGEMENTS

The single most important part of any penetration test is to nail down the scope of the engagement with the customer; this
discussion happens while negotiating the overall statement of work (SOW) and covers the kinds of assets and data the client
wants to see tested, as well as how much time the penetration tester has to devote to assessing and hacking the organization’s
assets.

Internal versus External

The most important distinction in scoping the engagement is that of an “external” versus an “internal” penetration test. External
engagements focus on web-based attacks against the target organization’s website or customer-facing web applications, email-
based phishing campaigns (both targeted and broad), and credential collection efforts via externally-facing endpoints like VPNs
and cloud-hosted assets. In contrast, internal assessments tend to focus on the internal local area network (LAN) and wireless
LAN (WLAN), and the systems that are not (intentionally) exposed to the internet: payroll systems, factory floor equipment,
internal source code repositories, and the like.

Over the course of our study, we found, unsurprisingly, that client organizations far preferred an externally-based penetration
test, as illustrated in Figure 1. Sixty-two
percent of all Rapid7 engagements include
an external component.

This finding comports with our notion of
the traditional penetration test. Client
organizations tend to be primarily
concerned with external threats attacking
their enterprise from the outside, over
the internet. After all, when we think
of a breach, we tend to think of that
externally-based attacker, who is likely
sitting in a far-off, extradition-proof region
of the world.

However, we do see that organizations
are also taking the insider threat a
little more seriously this year; these are
engagements where the penetration tester is on-site or near-site and is expected to connect to the internal network (LAN) or
wireless network (WLAN) to conduct attacks. In our 2016 study, we found that only 21% of engagements were purely internally
focused, whereas this year’s nearly 32% figure indicates more appetite for these internal assessments.

This uptick in internal assessments is an indicator that organizations are, in general, taking a more holistic approach to their
network security and are more likely to assess both their internal and external attack surfaces. We expect these organizations are
better equipped at defending the internal network in the event of either a rogue insider or an external attacker masquerading as
an insider with commensurate insider-level privileges.

We can drill down into which industries are more likely to be concerned with internal versus external threats by looking at
Figure 2.

157 (58.6%)

85 (31.7%)

9 (3.4%)

17 (6.3%)

Mixed (Both internal and external elements)

Neither (Code audit, IoT audit, etc)

Internal (Connected, physical, wifi, etc)

External (Web, Phishing, VPN, etc)

Source: Rapid7

Figure 1: Engagement Types
Aggregation is across all engagements (n = 268)

8

Within our sample data, we can see that communications and media, healthcare, manufacturing, retail, and services organizations
tend to employ more defense-in-depth strategies with a healthy balance of internal and external assessments, while the real
estate and technology industries are more focused on external threats, and education institutions are more focused on internal
threats.

The Time Box

One of the criticisms of penetration testing as a security practice is the notion of fixed start and end times. After all, “real” criminals
and other threat actors aren’t explicitly bound to a particular set of calendar dates to perform reconnaissance and launch attacks.
In contrast, penetration testing is almost always performed as an agreed block of billable hours, much like any other professional
service. It’s true that many reported corporate breaches are later recognized as the result of a persistent attacker who maintained
a network presence for weeks or months before detection, and this is a model of attack that is frankly ill-suited to the time-boxed
penetration testing model.

That said, the vast majority of
individual “attacks” that internet-
connected organizations are
expected to weather are
discrete, untargeted events;
most malicious activity is
performed by automated
scanning and reconnaissance,
tuned to look for a small set of
pre-defined vulnerabilities and
misconfigurations of which to
take advantage. In light of this,
an engagement time scope of a
week or 10 days is much longer
than the seconds to minutes that a typical untargeted, opportunistic incident is measured in.

Figure 3 shows typical engagement duration for a penetration test.

50%

25%

61.9%

44.4%

37.0%

83.3%

38.5%

58.2%

92.1%

28.6%

50%

75%

31.0%

33.3%

40.7%

53.8%

37.3%

2.6%

42.9%

4.8%

7.4%

7.4%

16.7%

14.3%

2.4%

14.8%

14.8%

7.7%

4.5%

5.3%

14.3%

External
(Web, Phishing, VPN, etc)

Internal
(Connected, physical, wifi, etc)

Mixed
(Both internal and external elements)

Neither
(Code audit, IoT audit, etc)

Utilities & Energy

Technology

Services

Retail

Real Estate

Manufacturing

Healthcare

Finance

Education

Communications & Media

25%

50%

75%

Source: Rapid7

Figure 2: Pentest engagement scope (by industry)
Percentage value is number of engagements in industry. Industries with low number of representations removed.

2 (0.8%)

29 (11.6%)

178 (70.9%)

7 (2.8%)

35 (13.9%)

Four or more weeks

Three weeks

Two weeks

One week

Less than one week

Source: Rapid7

Figure 3: Pentest engagement times

Aggregation is across all engagments where engagement length was recorded (n = 251)

9

We can see that client organizations far prefer a one-week engagement over any other time scope; 71% of all engagements land
on this one-week scale, with all other engagement times falling in popularity. While longer engagements do tend to uncover
more issues, most critical top-level findings can be discovered and documented by a skilled pentester inside a week, and the
expected return for more protracted engagements falls off pretty significantly.

What’s at Stake?

The final factor in scoping a penetration engagement is the characterization of what the client organization is interested in
protecting. Rarely are penetration tests structured in such a way that the pentesters are told to just go wild and see what they
can see—organizations nearly always have some outcome in mind. Are they worried about protecting the personal information
of their clients and customers, or are they more interested in how they protect their own intellectual property? Figure 4
illustrates what was reported as most important for the surveyed organizations.

We can see that organizations are primarily interested in securing their own sensitive data—this tends to be data such as
internal communications, financial metrics, and other business-critical internal products. This category is followed closely by
the personal or identifying information of customers and employees, and specifically, the authentication credentials of the
organization’s network users.

While trade secrets and classified information showed up in the mid-to-lower of the priorities list, this is likely because a
relatively low number of organizations have information they categorize this way. However, for those that do, protecting their
secret recipe of X-number of herbs and spices is a top priority. While the general emphasis on protecting various categories of
internal data suggests that cyber-espionage is a persistent concern among CISOs and other security practitioners, it also appears
that the more fundamental priorities eclipse worries about unfair and illegal competitive practices. This makes sense—after all, in
order to protect the highest value data, it’s critical to ensure that an organization’s overall security posture is reasonably healthy.
It doesn’t make a lot of sense to pour resources into protecting a specific internal source code repository if the state of the
network it’s connected to is untested.

100 (13.6%)

48 (6.5%)

34 (4.6%)

18 (2.5%)

6 (0.8%)

29 (4.0%)

57 (7.8%)

144 (19.6%)

155 (21.1%)

38 (5.2%)

14 (1.9%)

38 (5.2%)

30 (4.1%)

20 (2.7%)

2 (0.3%)Virtual currency

Digital certificate

Source code

Copyrighted material

Unknown

Medical records

Trade secrets

Classified information

Something else

System configuration

Bank account data

Payment card data

Authentication credentials

Personal or identifying information

Sensitive internal data

Source: Rapid7

Figure 4: Data types of interest for security validation

Aggregation is across all engagments (n = 268)

10

With the constant barrage of consumer electronics finding their way onto our networks and
into our lives, one often wonders about how all these exciting innovations come to fruition.
This is a short tale of IoT product development life cycle (PDLC), where a seemingly
unrelated lapse in holistic security resulted in mass pwnage, and underscores the
importance of periodic security reviews across all systems supporting these products.

If you haven’t heard of PDLC before, it is akin to the software development lifecycle (SDLC),
which many tech savvy people understand pretty well, but unlike SDLC, PDLC includes the
hardware platform. Simply put, PDLC is the process of developing a product and is part of
product life-cycle management (PLM). It also includes hardware and is concerned with the
complete development of a product. This process may, and often does, involve numerous
software components that may or may not be connected to the cloud.

Usually, the scope of an IoT/embedded device product audit is very specific to small
components or functionality of a device. Occasionally, the scope is wide open and our
customer wants us to go after anything and everything we might find that is related to the
target device. This engagement was the latter, and being that it was a “black box” approach,
we weren’t given any information other than, essentially, “we want you to target this
application that runs on the device.” We were not provided any domain names, internet
endpoints, or other intelligence relevant to the application.

Because the focus target was a cloud-connected application running on the device, we
began by reviewing network activity emanating from the device. This was done using
Wireshark and port mirroring of the target device’s Ethernet connection. The target
application was executed on the device, and we watched to see which hosts it reached out
to on the internet (DNS lookups, API connections to the cloud, etc.). Based on this analysis,
we discovered some fully qualified domain names (FQDNs) that we could use to seed our
subsequent information gathering efforts.

By searching for content on those FQDNs, and by using DNS open source intelligence
(OSINT) tools like dnsdumpster.com, we were able to identify several, likely related targets
that shared similar names to the DNS entries used by product under review. As we scanned
new targets with nmap and other reconniscience tools to learn more about the services
they might offer, we were off to the races.

We enumerated services across targets, and lo and behold, we discovered a lonely web URL
path that was accessible without authentication. This was odd, because everything else we
threw at that target returned an HTTP “403 Forbidden” response. This available URL was
discovered through the use of dirsearch, a directory and file bruteforce discovery tool.

With the interesting URL in hand, we fired up Burp Suite, loaded the webpage in our
browser, and inspected what happened next. Upon accessing the page, it was immediately
apparent that this was a development test site that was used to perform automated unit
testing for a test instance of the application we were targeting <insert drool emoji>.

ENGAGEMENT TYPE:
IoT Product Audit

VERTICAL:
Utilities & Energy

INVESTIGATOR:
Jesse Gardner

THIS ONE TIME ON A PENTEST:
PDLC VIGILANCE

11

As the automation scripts fired up, our browser asked if we wanted to remember the username and password. Now, keep in
mind that we didn’t provide any user credentials, but as it turns out, there were credentials embedded in the test script. Yes!
Pulling those embedded credentials from our proxy logs was easy, and now we had an administrative user account on the
application’s test environment.

The natural next step was to test those credentials against the main production application, and they worked like a charm.
This granted fully fledged administrative access to the backend production web application.

The customer was thankful for this discovery and activated their incident response process to ensure we were the only ones
who had tasted that particular forbidden fruit.

The takeaway from this tale is that PDLC is multifaceted and requires vigilance across many systems, including pre-production
QA and development systems. When figuring scope for an embedded device audit, don’t be too stingy with scope in
assessment activities—safeguard development systems and include them in security review/auditing. Insecure password
storage and reuse is definitely a thing, and controls and guidance around those secondary systems are a must-have for a
complete assessment. 

12

This edition of Under the
Hoodie saw a significant
increase in the rate that
software vulnerabilities
are exploited in order
to gain control over
a critical networked
resource.

13

VULNERABILITIES EXPLOITED

Software vulnerabilities can be thought of as unintentional, undocumented
functionality, and exploits are special-purpose programs designed to take advantage
of that functionality. Unfortunately, as code and systems get more complex and
more interconnected, the likelihood of introducing vulnerabilities in a networked
environment increases, more or less to the point of inevitability.

In practice, when vulnerabilities are exploited, they allow the attacker to bypass
some kind of security control. The effects can range from information leaks (the
attacker learning a secret that they shouldn’t be able to learn) through privilege
escalation (the attacker gaining special rights otherwise unavailable), all the way to
arbitrary code execution (the attacker running code of their choice on the target
computer, completely subverting the vulnerable software).

Software vulnerabilities are at the core of penetration testing, and this edition of
Under the Hoodie saw a significant increase in the rate that software vulnerabilities
are exploited in order to gain control over a critical networked resource. Our last
report saw about a 68% rate of vulnerability exploitation. Using a glass-half-full point
of view, 32% of sites surveyed for the current edition of this report were free of
exploitable vulnerabilities.

This edition’s survey tells a different story, as seen by Figure 5.

Among the 2017–2018 sample period, the environments where software
vulnerabilities were encountered grew significantly; during the survey period,
only 16% of sites tested did not suffer vulnerability exploitation at the hands of
penetration testers. Unfortunately for defenders, 84% of surveyed sites were
compromised to some degree through vulnerability exploitation. We delve deeper
into these results in Figure 6 by breaking down these figures among external,
internal, and mixed engagements.

47 (11.0%)

6 (1.4%)

26 (6.1%)

3 (0.7%)

18 (4.2%)

25 (5.8%)

6 (1.4%)

67 (15.6%)

51 (11.9%)

140 (32.6%)

7 (1.6%)

1 (0.2%)

32 (7.5%)

Third-party 0day

DoS

Citrix breakout

Memory corruption

SQLi

Group Policy Preferences

Local privilege escalation

CSRF / Clickjacking

XSS

Broadcast name resolution

SMB relaying

None. Good for them!

Some other vulnerability

Source: Rapid7

Figure 5: Vulnerabilities encountered during engagement
Aggregation is across all engagements (n = 268)

84% of surveyed sites
were compromised

to some degree
through vulnerability

exploitation

14

Among the 178 internal engagements surveyed, less than 4% were software-
vulnerability-free; in other words, at least one vulnerability was exploited in over
96% of internal penetration tests.

Since we know that most engagements are externally based, we would expect to
see a preponderance of cross-site scripting (XSS), cross-site request forgery (CSRF),
and SQL injection (SQLi) vulnerabilities, since these are most commonly associated
with externally-facing web applications. However, this is not the case—penetration
testers reported encountering “some other vulnerability” more than 32% of the
time, usually (56%) in combination with at least one of the other more specific
vulnerability categories.

Penetration testers (and real adversaries) do rely on the homogenic character of
corporate networks, using tried-and-true commodity exploits that are effective
nearly everywhere. The most obvious example of this is SMB Relaying, which is
exploited almost 26% of the time on internal engagements and 12% overall. This
vulnerability is common to Microsoft Windows networks—which is to say, common
to nearly all corporate networks—and exploiting this vulnerability involves the
attacker impersonating an SMB server in an environment where SMB traffic is
unsigned. Combined with Broadcast name resolution, which is also common on
such networks (and exploited about 24% of the time on internal engagements),
attackers can exploit these issues in most cases to gain site-wide control of any
given Microsoft-based network. (For a detailed walkthrough of SMB relay, see
Rapid7’s Leon Johnson’s seven-minute video at <www.rapid7.com/resources/
smb-relay-attacks-explained/>.)

However, these results also imply rather conclusively that there is often an
additional, custom component to penetrating a client’s network, especially in
external engagements where SMB networking vulnerabilities may not be available
to the attacker. The practice of penetration testing appears to involve significant
situational awareness and leveraging multiple vulnerabilities after the first one is
uncovered and exploited. Relying entirely on an automated solution or a short list
of canned exploits is likely to meet with failure, while a more thorough, hands-on
approach nets significant wins for the attacker.

Another interesting data point is the absolute rarity of third-party zero-day
vulnerabilities encountered and exploited on site. In the one reported case of
zero-day use, it was in combination with XSS and “some other vulnerability,” so
even in this case, the zero-day was incidental to the engagement’s success. The
data here supports the intuition that competent attackers do not need newly
discovered, unreported vulnerabilities in order to successfully compromise a site.
Known third-party vulnerabilities, sometimes in combination with site-specific
vulnerabilities, is often enough to gain significant control over a network.

2 (0.9%)

2 (0.9%)

25 (11.7%)

1 (0.5%)

2 (0.9%)

5 (2.3%)

43 (20.1%)

3 (1.4%)

94 (43.9%)

7 (3.3%)

1 (0.5%)

29 (13.6%)

43 (24.2%)

2 (1.1%)

1 (0.6%)

1 (0.6%)

13 (7.3%)

17 (9.6%)

5 (2.8%)

6 (3.4%)

46 (25.8%)

41 (23.0%)

3 (1.7%)

2 (10%)

2 (10%)

1 (5%)

3 (15%)

3 (15%)

1 (5%)

1 (5%)

2 (10%)

5 (25%)

External (Web, Phishing, VPN, etc) (n=214) Internal (Connected, physical, wifi, etc) (n=178) Mixed (Both internal and external elements) (n=20)

XSS
Third-party 0day

SQLi
Some other vulnerability

SMB relaying
None. Good for them!

Memory corruption
Local privilege escalation
Group Policy Preferences

DoS
CSRF / Clickjacking

Citrix breakout
Broadcast name resolution

Source: Rapid7

Figure 6: Vulnerabilities by engagement scope
Counts and percentages are reflections of aggregations by scope

Relying entirely
on an automated
solution or a short list
of canned exploits is
likely to meet with
failure, while a more
thorough, hands-on
approach nets
significant wins for
the attacker.

http://www.rapid7.com/resources/smb-relay-attacks-explained/
http://www.rapid7.com/resources/smb-relay-attacks-explained/

15

THIS ONE TIME ON A PENTEST:
PDLC VIGILANCE

I was part of a team of several consultants tasked with testing the security of a
company’s public-facing infrastructure to determine if there were any vulnerabilities that
might lead to theft of company data. The scope we were given included several servers
running web applications for various inter-company business processes. We found only
the standard web protocols exposed to the internet, along with a few SSH interfaces
here and there. It didn’t take us long to discover that the organization we were testing
used an internal single sign-on (SSO) service that allowed a single set of credentials to be
used on most of the applications. We knew that if we could get our hands on some valid
credentials, we would be able to get to the target data. Our first barrage of attacks
involved testing the firewall for weaknesses and attempting to coax SMB connections
from the internal network, using specially crafted emails to employees of the company.
Those tactics failed (good for the client!), so we were finally left with “the hard way”—we
needed to hack our way through the exposed web applications.

We began the task of testing the security of each and every web server. Not long into the
process, we identified three servers that hadn’t had their OpenSSL installations updated
in a while; they were consequently vulnerable to the “Heartbleed” bug of 2014. We
divided up the three servers amongst the team and began harvesting memory contents
from the three servers in 65 KB chunks. We set up a looping process to continually
request chunks of memory and append them to the ever-expanding file of leaked secrets.
We let our automated memory grabbers run overnight, and by the next morning, we
awoke to find a wealth of information.

The memory files we had generated contained cleartext usernames and passwords for
users that logged into the servers in question. In addition, we were able to confirm that
one of the servers also acted as a secure messaging server which handled sensitive
emails. As a result, our memory dump file contained full message bodies of hundreds of
(otherwise) secure emails!

To press our advantage, we parsed the memory dumps for all the user accounts we could
find and ended up with just over a dozen sets of credentials. Unfortunately for us, none of
the user accounts we harvested had VPN access to the internal network. However, they
DID have access to almost every public-facing web application, as we had suspected in
the beginning. We started digging, armed with our newly captured credentials. In the
end, we gained access to the company’s HR application, which yielded a large amount of
sensitive employee information, including corporate credit card numbers, passport data,
W-2s (which include employee social security numbers), and health insurance enrollment
information with dependents’ names, birth dates, and addresses.

This engagement helped the client to understand that an attacker doesn’t always have to
get access to the internal network to extract critical data and cause tremendous damage,
and illustrated the need to keep up on patch management across all networked assets
and the libraries that underpin software running on those assets. 

ENGAGEMENT TYPE:
External Assessment

VERTICAL:
Utilities & Energy

INVESTIGATOR:
Trevor O’Donnal

THIS ONE TIME ON A PENTEST:
SCRAPING MEMORY WITH HEARTBLEED

16

Some kind of network or
service misconfiguration
is encountered on an
internal penetration test
over 96% of the time.

17

MISCONFIGURATIONS ENCOUNTERED

Distinct from software vulnerabilities are network misconfigurations. These are issues that, while not baked into the
software itself, tend to arise from implementation errors on the part of the targeted organization’s IT staff. While penetration
testers were able to exploit software vulnerabilities about 84% of the time, there was a slightly lower rate of leveraging
misconfigurations (about 80% of the time), as shown in Figure 7.

After “none” and “other,” the
most prevalent named
misconfiguration is a
“service misconfiguration.”
These tend to be network
services either in default
configurations, which
are inappropriate for the
network, or are configured
in such a way that some
shipping security feature is
disabled. For example, if a
cryptography service allows
for a fallback to a weak,
easily cracked encryption
algorithm, then that would be
a misconfiguration; it’s likely
intended functionality, but it’s
also not appropriate in terms of
modern security standards.

Once again, we should take these figures in the context of internal, external, and mixed engagements in order to better
understand what kinds of misconfigurations are likely to be encountered on a given penetration test.

As seen in Figure 8, some kind of network or service misconfiguration is encountered on an internal penetration test over
96% of the time, which is coincidentally exactly the same rate as vulnerability exploitation. As with vulnerability exploitation,
penetration testers rarely exercise exactly one misconfiguration at a site. A lack of least-privilege principles, in combination
with password reuse and service accounts running with unfettered Domain Administrator privileges, all point to a habitual use
of too-powerful accounts to perform normal business functions. Penetration testers and criminal attackers alike will tend to
focus their efforts on these service accounts once they are discovered.

Similarly, a lack of network segmentation and a lack of detection controls will tend to mean that once an attacker has
compromised one computer on one network, then that attacker has a straight shot to nearly any other computer on site,
regardless of each of those computers’ functions.

25 (5.1%)

28 (5.7%)

46 (9.4%)

27 (5.5%)

42 (8.6%)

99 (20.3%)

5 (1.0%)

47 (9.7%)

36 (7.4%)

52 (10.7%)

80 (16.4%)

Outdated / stale firewall rules

Default account access

Lack of network segmentation

Lack of detection controls

Service accounts as Domain Administrators

Lack of patch management

Lack of least-privilege principles for accounts

Password reuse

Service misconfiguration

Some other misconfiguration or practice

None

Source: Rapid7

Figure 7: Misconfigurations leveraged per engagement
Aggregation is across all engagements (n = 268)

6 (3.0%)

5 (2.5%)

9 (4.5%)

2 (1.0%)

9 (4.5%)

71 (35.3%)

4 (2.0%)

7 (3.5%)

5 (2.5%)

27 (13.4%)

56 (27.9%)

18 (7.7%)

17 (7.3%)

33 (14.1%)

20 (8.5%)

31 (13.2%)

9 (3.8%)

36 (15.4%)

26 (11.1%)

22 (9.4%)

22 (9.4%)

1 (2.9%)

6 (17.1%)

4 (11.4%)

5 (14.3%)

2 (5.7%)

2 (5.7%)

1 (2.9%)

4 (11.4%)

5 (14.3%)

3 (8.6%)

2 (5.7%)

External (Web, Phishing, VPN, etc) (n=201) Internal (Connected, physical, wifi, etc) (n=234) Mixed (Both internal and external elements) (n=3

Some other misconfiguration or practice
Service misconfiguration

Service accounts as Domain Administrators
Password reuse

Outdated / stale firewall rules
None

Lack of patch management
Lack of network segmentation

Lack of least-privilege principles for accounts
Lack of detection controls

Default account access

Source: Rapid7

Figure 8: Misconfigurations leveraged by engagement scope
Counts and percentages are reflections of aggregations by scope

18

Penetration testing is a valuable tool for clients to identify and remediate vulnerabilities
and misconfigurations. On one engagement, I was able to demonstrate how strong
security controls and threat mitigation can miss the mark, even when only one or two
systems fall through the cracks.

Like many internal network penetration tests, I started by looking for NetBIOS Name
Service (NBT-NS) and Link Local Multicast Name Resolution (LLMNR) requests to exploit.
These auxiliary name resolution services can be used to resolve hostnames that are not
found in DNS, which vulnerable hosts transmit out to the local network in broadcast and
multicast requests, respectively. By sending poisoned responses that claim the desired
host name, a malicious actor can do things such as receiving NetNTLMv2 password hashes
from SMB connections.

Testing across two different local networks, I identified six hosts making NBT-NS requests.
Poisoning attacks resulted in Rapid7 receiving SMB connections and password hashes for
only one domain user.

One of the most immediate risks of obtaining these password hashes is that they could be
cracked. During this assessment, Rapid7 was unable to crack the one NetNTLMv2 password
hash that was obtained.

Another risk of being able to solicit these SMB connections is SMB relay, where that
challenge-response authentication traffic can be replayed against other hosts without the
password needing to be cracked. Using RunFinger.py, I found three SMB hosts that did not
require message signing, only one of which was a Windows server joined to the domain.

Leveraging SMB connections from the one user account that was affected by NBT-NS
poisoning, and using Smbrelayx to relay that connection to the one domain host that did
not require SMB message signing, Raffle was quickly able to retrieve password hashes for
local user accounts from that host.

Unlike NetNTLMv2, NTLM password hashes are not challenge-response pairs, and can be
used for “pass-the-hash” authentication; the uncracked password hash can itself be used as
a password for network-based authentication. I was able to use these same local adminis-
trator credentials on nearly half of the SMB hosts that were in scope for the assessment.
Using these credentials, I retrieved cached plaintext passwords and password hashes with
Mimikatz. Mimikatz is an application that pulls cached credentials from the memory of a
Windows computer, including domain logins, so I was able to recover a cached NTLM
password hash for one of the domain administrators.

After using domain administrator access to retrieve NTLM password hashes for all of the
domain users, I still had very limited success cracking passwords—valid credentials were
only discovered for three working user accounts. While these accounts were enough to
find sensitive documents in file shares and SharePoint, the password cracking results
showed that the client was very serious about password requirements. When discussing
these results during an on-site debrief, the client explained that most of their users have
smart cards and long, randomly generated passwords. Despite these strong passwords and
very limited findings on most hosts, though, this engagement showed that a few missed
systems can still allow a malicious actor to gain a foothold using common attacks. 

ENGAGEMENT TYPE:
Internal Network Assessment

VERTICAL:
Utilities & Energy

INVESTIGATOR:
Ted Raffle

THIS ONE TIME ON A PENTEST:
YOU MISSED A SPOT

19

CREDENTIALS CAPTURED

We’ve discussed the vulnerabilities exploited and misconfigurations leveraged by
penetration testers, and while these are certainly the more glamorous, Hollywood-
hacker tactics employed, most penetration testers looking for a quick win will target
an organization’s user credentials. After all, even if you have a perfectly configured
network and your patch management processes are bulletproof, you still need
some mechanism to allow your users to actually use the resources you’ve provided
for them. Credential-gathering attacks can either be the object of exploiting a
vulnerability or leveraging a misconfigured network service, but these attacks don’t
necessarily rely on mistakes made by software developers or IT administrators.
Instead, it can be performed through easier techniques, such as phishing and social
engineering campaigns.

In nearly all cases, a credential is a username and a password. While some
organizations assign passwords to their users, most organizations today allow users
to choose their own passwords, provided they fall within some minimum set of
standards of length and complexity. Unfortunately, this strategy continues to be
the source of much angst and gnashing of teeth among security professionals and
pundits.

For example, while an organization may allow users to pick their passwords,
they will tend to enforce certain complexity rules in order to encourage “good”
passwords. A common list of requirements might be, “at least eight characters,
including at least one upper case, one lower case, one number, and one special
character.” As a result, a very common password that too-clever humans pick is
“Summer2018!” (with the exclamation point). It fits the proscribed pattern, but
because it’s so easy to type, remember, and change every 90 days, it is one of the
worst passwords a person can choose.

Figure 9 describes the success rate of penetration testers against a site’s
credentialing procedures.

Not obtained — 119 (47%) Obtained — 132 (53%)

Source: Rapid7

Figure 9: Credential capture success rate across all engagements
Obtaining credentials was not an engagement goal for all engagements (n=251)

20

Across all engagements where the target organization’s networked assets were part of the scope, penetration testers were
able to successfully compromise credentials 53% of the time, making it slightly more likely than not that an attacker could
impersonate at least one authorized user on the network. If the penetration tester is on the local network as part of an internal
or mixed assessment, the success rate for credential compromise is even more stark:

Given LAN or WLAN connectivity, penetration testers were able to capture credentials 86% of the time; this is the one security
control every single person in the organization should be the most aware of, and yet this is where penetration testers thrive.

Perhaps more alarming, though, is the 33% success rate among external engagements. Often, these engagements don’t even
have network credential testing as part of the stated scope of the engagement, so this figure is a little underreported in our
survey, and yet, our data shows that credentials fall out in the findings by accident about a third of the time.

Identifying Privileged Credentials

Regardless of the mechanisms of defining discrete levels of privilege, accounts typically fall into the category of “user-level”
accounts and “privileged” accounts. The former are used by people (and rarely, services) who don’t need or want enhanced
privileges on a given computer; they can’t install system-altering software by themselves, delete logs, or otherwise affect the
overall security of the host operating system. The latter, in contrast, are used by people (and often, services) who do need these
rights; they’re typically administrator accounts, or otherwise have unusual levels of control over the authenticating system.
Figure 11 illustrates the methods that penetration testers use to discover, and then target, privileged accounts.

This chart illustrates the most common mechanism of elevating one’s privileges from a mere user account to a privileged
account: scraping memory for cached credentials, usually on Windows-based workstations, and usually with the techniques
employed by the venerable security assessment tool Mimikatz, which is open source and available at <github.com/gentilkiwi/
mimikatz>. While these techniques used to be the exclusive purview of penetration testers and manual, hands-on criminal
attackers, the WannaCry event of February 2016 catapulted these techniques into the mainstream for modern ransomworms. In
many Windows networks, if a domain account (including service accounts) has logged in to a workstation, that password hash
will be stored in memory, available to users who have at least local administrator privileges. This includes domain accounts with
domain passwords; therefore, in cases where local users have local administrator access (either intentionally or accidentally), it is
often trivial to escalate privileges to domain administrator.

105 (66.9%)

52 (33.1%)

12 (14.1%)

73 (85.9%)

2 (22.2%)

7 (77.8%)

External (n=157) Internal (n=85) Mixed (n=9)

Not obtained

Obtained

Not obtained

Obtained

Not obtained

Obtained

Source: Rapid7

Figure 10: Credential capture success rates by engagement scope

35 (37.6%)

25 (26.9%)

4 (4.3%)

29 (31.2%)

Guessed variant of admin/administrator/root

Enumeration of group memberships

Other

Cached credentials

Source: Rapid7

Figure 11: Ways privileged accounts were identified/compromised
Not all engagements requested credential harvesting (n = 93)

http://github.com/gentilkiwi/mimikatz
http://github.com/gentilkiwi/mimikatz

21

Methods of Capturing Credentials

Regardless of the trickery described above, the most common mechanism of actually obtaining credentials is painfully low tech,
as illustrated in Figure 12.

Regardless of the method of guessing usernames (which are rarely secret, or only lightly obfuscated), the most common
mechanism employed by penetration testers is “manual guessing,” which is exactly like it sounds: a professional human
password-guesser manually selecting passwords to try against a list of usernames.

0.37%

0.37%

4.48%

4.10%

2.24%

0.75%

1.49%

2.24%

2.24%

1.87%

4.48%

1.49%

1.12%

1.12%

0.37%

0.75%

0.37%

1.12%

0.37%

3.73%

0.37%

0.37%

0.37%

0.37%

1.49%

1.12%

1.49%

0.75%

0.37%

1.49%

1.12%

1.12%

6.34%

0.37%

1.49%

1.49%

4.48%

1.87%

1.49%

2.99%

1.87%

2.24%

2.24%

1.49%

10.07%

0.37%

1.87%

0.75%

0.75%

1.12%

0.75%

0.37%

1.12%

1.12%

0.37%

6.34%

1.12%

Anonymous
enumeration

Document
Metadata

Guessing
common

usernames
Open-source
intelligence

Website
enumeration

organization specific

Manual Social Engineering

Manual guessing

Man-in-the-middle

Known default account

Guessable default account

Guessable

Disclosed in plaintext

Disclosed from storage

Disclosed from privileged storage

Disclosed from network challenge-response traffic

Disclosed from 3rd party password dump

Automated Social Engineering

2.5%

5.0%

7.5%

10.0%

Source: Rapid7

Figure 12: How usernames and passwords were captured
Percentage value is relative to unique combinations of unique username and password exploit methods

PASSWORD COMPLEXITY IN THE WILD

Pentesters are always trying to get access. Even the lowest level of access can be enough
to get a foothold in a network. One of the best ways to get access is with a password. So
how do pentesters get passwords? One way is through guessing, but the more effective
credential capture strategies don’t involve just random guessing. Through experience, we
know typical passwords that people choose, and we also know the general format.

At Rapid7, we have a set of about 130,000 passwords and their corresponding hashes,
pulled from the domain controllers of several client sites where we gained site-wide
administrator access. No usernames are saved with the passwords, nor is any other client-
specific information. These passwords are transmitted and stored securely, and access
to this infrastructure is limited only to select Rapid7 employees from Rapid7-controlled
endpoints. The data is relatively fresh, with the oldest only a few months old, so most
of these passwords were selected by users in 2017 or 2018. Duplicate passwords are also
kept in order to learn how often certain passwords and password patterns are employed
between disparate organizations. The value of this dataset is in the fact that these are
real passwords that real people use at their real jobs; we expect that very few of these
accounts represent “throwaway” accounts as one might find in many of the public
datasets that come from website breaches. It follows, then, that we should expect these
VPN and workstation passwords to be reasonably complex and “secure.” But are they? In
short: not very.

Three Most Common Password Patterns

In this dataset, there are three extremely common passwords. The first is one that most
people would guess, and that is “password.” To be fair, there are many variations of
“password.” We see Password1, Password123, Password2, Password1!, and many others.
If we are looking at specific passwords that follow this popular pattern, then Password1
is the most common. But due to the many variations, we can add them all up and see
that these variations on “password” and some minor decorations are the most common
password pattern, with 4,001 entries out of 129,812, or just about 3%.

The next password pattern may not be as obvious, but when you think about the thought
process of the user, it makes sense. As mention above, the most common company
password policy requires that people change their password every 90 days, which is
about every three months. The other thing that changes every three months? The season.
Many people have “invented” a system where they have a password that is easy to
remember and never repeats by simply choosing the current season and appending the
year. When looking at examples like Winter2018, Summer2017! and Spring16! We count a
total of 1,788 passwords, or 1.4% of the total set.

The third password pattern isn’t a specific word, but it is the most common approach
in the list: the organization’s name. When guessing passwords, one of the first patterns
penetration testers will try are variations of the company’s name. We found a total of
6,332 instances of passwords that included the target company’s name, which works
out to just under 5% of the total set. The base of these passwords includes the company
name, but then the variations on it are similar to what we saw with “password.” Examples
include Company123!, Company1, C0mp@ny1, and Company2018. So, while “password”
is the most common password pattern base across our data set, decorating the
organization’s name as a password is the most common strategy employed.

These percentages may not seem large, but keep in mind that a malicious actor might
only need a single set of working credentials to gain access a network. If you have 100
users, then there’s a good chance that five will contain the company’s name, three will
be based on the word “password,” and one or two will be the current season and year.
Multiply these percentages out to the number of users a company has, and it increases
the likelihood of a correct password guess in the absence of site-wide, username-
agnostic rate-limiting.

DEEP
DIVE

INVESTIGATOR:
Patrick Laverty

VERTICAL:
All

Numerical Patterns Emerge

During penetration tests, we often find that the target organization’s minimum password length is set to eight characters.
With this in mind, let’s look at the aggregated password lengths from our dataset. One thing that sticks out is that people
often stick to exactly this minimum length. If we check the length of passwords in our datasets, the top ten are:

It turns out, eight characters is not only the most common, but it actually is more common than the next four combined!
This information can help someone trying to perform password guessing or password cracking simply by avoiding
passwords that are nine or ten characters long, or pretty much any other password length.

We can also look into the character patterns used in our two datasets. We are able to generate patterns and figure out
which characters are used in each position. This can show where someone prefers to place the uppercase letter, the
digit, the special character, and the lowercase letters. People tend to end their password with a digit. Eight of the top ten
password patterns end with a digit. Knowing this, we will want to do most of our password guessing with at least one
digit at the end. But which digit?

When required to use a digit, most people will simply stick a “1” on the end, and our data proves this out. We saw an
example of this earlier with Password1 and Company1. What about if there is more than one digit at the end, what do they
use?

59,486 (46.0%)

23,093 (17.9%)

22,293 (17.2%)

8,268 (6.4%)

5,415 (4.2%)

4,537 (3.5%)

2,808 (2.2%)

2,004 (1.6%)

1,148 (0.9%)

225 (0.2%)15

14

13

6

12

7

11

9

10

8

0 20,000 40,000 60,000
Count

Pa
ss

wo
rd

 le
ng

th

Source: Rapid7

Figure 13: Distribution of password lengths
Only the most common password lengths are shown. Percentages calculated based on full data set.

D
E

E
P

 D
IV

E

0

1

2

3

4

5

6

7

8

9

0 10000 20000 30000 40000
Source: Rapid7

Figure 14: Distribution of final digit frequency in passwords
Data derived from potfile on Password Cracking Server.

The top result of “23” may point to another pattern of human choices. Let’s look at the most common last three digits:

We do see that people are using a very memorable pattern of digits at the end, 123. Maybe this is to pad length on a
short, five-character password, or maybe this is to not just have a single digit, thinking that three digits is (somehow)
better. So what does it look like if we have four digits at the end? Maybe surprisingly, a new candidate emerges.

2,727 (2.10%)

1,498 (1.15%)

1,108 (0.85%)

922 (0.71%)

666 (0.51%)

577 (0.44%)

500 (0.39%)

497 (0.38%)

461 (0.36%)

453 (0.35%)2014

1818

2012

2013

2015

2016

1234

2017

2018

2009

0 1,000 2,000 3,000
Source: Rapid7

Figure 17: Most common trailing four digits in passwords
Only the most common password endings are shown. Percentages calculated based on full
data set.

2,771 (2.13%)

2,762 (2.13%)

1,523 (1.17%)

1,133 (0.87%)

979 (0.75%)

686 (0.53%)

599 (0.46%)

551 (0.42%)

523 (0.40%)

472 (0.36%)818

013

012

015

016

234

017

018

009

123

0 1,000 2,000 3,000
Source: Rapid7

Figure 16: Most common trailing three digits in passwords
Only the most common password endings are shown. Percentages calculated based on full
data set.

D
E

E
P

 D
IV

E

3,375 (2.60%)

3,202 (2.47%)

3,016 (2.32%)

2,060 (1.59%)

2,026 (1.56%)

1,816 (1.40%)

1,627 (1.25%)

1,415 (1.09%)

1,397 (1.08%)

1,379 (1.06%)15

13

16

11

01

12

17

18

09

23

0 1,000 2,000 3,000 4,000
Source: Rapid7

Figure 15: Most common trailing two digits in passwords
Only the most common password endings are shown. Percentages calculated based on full
data set.

When there are four digits at the end, the most common appear to resemble a year,
but 1234 is also represented. In penetration testing, we do often see people putting
the year at the end of the password, as in the Summer2018 example. The top result of
“2009” remains a bit of a mystery, since most of the year-like patterns indicate more
recent years, but this may be an artifact of a single penetration test that netted a
large number of legacy accounts which haven’t seen a password rotation in several
years. Or, these passwords might be connected to multiple employees across many
organizations who all happen to have eight- or nine-year-old kids. It’s hard to know for
sure, given the data anonymization we perform before adding passwords to the set.

If we take this just one step further and look at the last five digits, our original pattern
returns with sequential digits, starting with “12345.”

In summary, the data collected and presented here shows that humans are
predictable when they create their own passwords. People have a lot of passwords
to remember and may have heard that password reuse is a bad idea, so instead,
they use a password pattern that is memorable for the service and choose the name
of the company as their base word. We also see patterns where numbers are most
commonly used at the end of a password, and particular digits and patterns of digits
that stand out as being more common choices for users. 

188 (0.14%)

124 (0.10%)

74 (0.06%)

58 (0.40%)

31 (0.02%)

22 (0.02%)

18 (0.01%)

17 (0.01%)

16 (0.01%)

10 (0.01%)23344

12233

56789

54321

11111

45678

34567

12334

23456

12345

0 50 100 150 200
Source: Rapid7

Figure 18: Most common trailing five digits in passwords
Only the most common password endings are shown. Percentages calculated based on full data set.

When there are
four digits at the

end, the most
common appear

to resemble a
year, but 1234 is

also represented.

26

Extending Privilege

Once a valid credential is captured
or a critical service is compromised
through vulnerability exploitation
or configuration abuse, the usual
goal of a penetration tester is
to gain site-wide administrative
control, almost always via a
Domain Administrator or Enterprise
Administrator credential. Figure 19
illustrates how often this prized goal
is achieved on engagement.

About 28% of all engagements
result in site-wide administrative
control of the target organization,
but we can also break down this
success rate between external penetration tests and engagements that have an internal component:

Given the significantly higher chances of encountering a vulnerability, misconfiguration, or weak credential when LAN or WLAN
access is obtained, it should come as no surprise that pentesters on an internal engagement were able to gain site-wide
administrative control 67% of the time.

No — 194 (72%) Yes — 74 (28%)
Source: Rapid7

Figure 19: Site-wide administrative control success rate (overall)
Aggregated across all engagements (n=268)

146 (93%)

11 (7%)

28 (32.9%)

57 (67.1%)

3 (33.3%)

6 (66.7%)

External (Web, Phishing, VPN, etc) (n=157) Internal (Connected, physical, wifi, etc) (n=85) Mixed (Both internal and external elements) (n=9)

No

Yes

No

Yes

No

Yes

Figure 20: Site-wide administrative control success rate (by scope)
Counts and percentages are reflections of aggregations by scope

27

As penetration testers, we are continually talking to our clients about the importance
of a strong password policy for the organization, as well as the use of two-factor
authentication (2FA). While we feel that we constantly talk about this issue, in many
cases the recommendations are overlooked or set aside. However, it is pretty safe to say
that one of the most common reasons we are able to access systems and networks to
reach sensitive information is because of weak credentials resulting from weak password
policies.

One of the most important aspects of penetration testing is the initial stage of information
gathering. We use various techniques during this stage, one of which is looking for leaked
credentials for a client organization posted online—perhaps in public password dumps.

In a recent web application penetration test that I performed, a number of email addresses
and passwords were found in a public password dump. In the case of this web application,
the login required a user’s email address and their password for access. With the list of
usernames and passwords, I kicked off my login attempts, and soon found that one of
the credential sets listed in the password dump worked on the corporate network. This is
likely because the user was reusing passwords between sites and had not changed their
corporate password after the breach of the other site.

With access to the account, I was able to download a large amount of customer PII data,
as well as financial information from the affected user’s email inbox. I discovered that this
user recently left the company, so access to other areas with their account to additional
customer PII data was removed. Yet, their email inbox was still fully accessible. In addition,
with access to the account, further information was then gathered, including a list of
internal users, the password policy for the web application, and more. In addition, there
was the risk of a malicious actor utilizing this abandoned email address as a “trusted”
account for phishing against other users both internally and externally. 

ENGAGEMENT TYPE:
External Assessment (Web
Application)

VERTICAL:
Education

INVESTIGATOR:
Steven Laura

THIS ONE TIME ON A PENTEST:
THE PERILS OF PASSWORD REUSE

28

Furthermore, these
results imply that if
the penetration tester
is not detected within
a day, it’s unlikely the
malicious activity will be
detected at all.

29

DETECTION AND DEFENSE

As stated above, penetration testers are nearly always limited by a relatively short
engagement window and are rarely afforded more than two weeks to assess
and compromise a given target. This time-box necessarily limits the opportunity
for stealthy attacks, which tend to take much longer than the typical Metasploit
run. Low-and-slow scans are nearly impossible to detect, and careful planning
and re-planning during a phishing, social engineering, or even traditional hacking
campaign can mean the difference between domain admin and getting caught in
the act.

Despite these caveats, Rapid7 penetration testers remained undetected on 61% of
engagements, as seen in Figure 21.

Furthermore, these results imply that if the penetration tester is not detected
within a day, it’s unlikely the malicious activity will be detected at all. We also took
a look at detection rates in large organizations versus small, as shown in Figure 22.

153 (61.4%)

56 (22.5%)

20 (8.0%)

20 (8.0%)

I was not detected

Within a week

Within a day

Within an hour

Source: Rapid7

Figure 21: Detection rates (overall)
Detection rate percentage for engagements where detection evasion was part of scope (n=249)

52 (56.5%)

22 (23.9%)

6 (6.5%)

12 (13.0%)

91 (63.2%)

34 (23.6%)

11 (7.6%)

8 (5.6%)

Large Small

I was not detected

Within a week

Within a day

Within an hour

Source: Rapid7

Figure 22: Detection rates split by organization size
Detection rate percentage for engagements where detection evasion was part of scope (n=249)

Despite these caveats,
Rapid7 penetration

testers remained
undetected on 61% of

engagements

30

Here, we see that the penetration tester remained undetected somewhat more often in small enterprises of less than 1,000
employees (63% of the time) versus large enterprises (at 57% of the time). The difference here is worth discussing. Large
enterprises have more assets to protect, and larger, more complex networks tend to provide more opportunity for finding
unpatched vulnerabilities, misconfigurations, and weak credentials to take advantage of. However, large enterprise also will tend
to have more existing detection capabilities thanks to larger IT budgets and a more experienced staff. This detection capability
is further suggested by the fact that when the attacker is detected, that alarm is sounded and acted upon in the first hour
somewhat more often in the larger enterprises in our survey.

However, the overall detection rate delta is not that large, at only about 6% better performance on the part of the target
organization if it is in the “large” category. Both large and small organizations would do well to review their detection
capabilities before their next penetration test.

Credential Management

As we can see from this study, credential capture is often the least complex method to ultimately compromise a network.
At first glance, it would seem that it is also the easiest security control that an IT team in an organization can shore up with
some detection and defense strategies. After all, it is effectively impossible to guarantee that modern, complex software and
networks are going to be 100% free from vulnerabilities or misconfigurations, but it should be comparably easy to institute some
basic controls for managing user accounts.

Alas, as far as we have observed in the field, this is not the case.

Account Lockouts

Locking out an account for some amount of time (often forever) after some number of failed password attempts (often five), is
among the oldest automated techniques for securing credential access in the face of an active attacker.

Lockouts are the boogeyman of all junior penetration testers. Triggering a lockout can not only get a penetration tester
detected, but it can cause a personal denial-of-service condition for the legitimate user of that account and make for an
unhappy client. However, the legendary lockout is relatively rare in the field, as illustrated in Figure 23.

A common tactic to capture credentials is “bruteforcing,” or automatically attempting many, many passwords per account in
a more-or-less blind way. Among those tests where bruteforcing credentials was a permitted, in-scope action, it was a serious
factor only 7% of the time when the lockout strategy did, in fact, cause the penetration tester to get detected, abandon
authentication attacks entirely, or cause a service outage. Although lockouts do tend to slow down credential capture (16% of
the time), it was either ineffective or absent on 77% of the engagements where lockouts were specifically being tested.

79 (60.8%)

5 (3.8%)

1 (0.8%)

21 (16.2%)

3 (2.3%)

21 (16.2%)

It locked out legitimate users

It prevented me from using auth attacks

It got me detected

It made things take longer

There were no account lockouts

Account lockouts had no effect

Source: Rapid7

Figure 23: Account lockouts during engagement
Aggregation is across all engagements that tested for lockouts (n = 130)

31

Two-Factor Authentication

A more recent credential control is two-factor authentication (2FA), also sometimes
known as multi-factor authentication (MFA). After a password is correctly entered,
the user is challenged for an additional value. This is usually a short series of
algorithmically generated numbers based on a shared secret between the 2FA
device and the authenticating computer. Some organizations deploy this solution
by either issuing employees with a purpose-built 2FA device, or by leveraging the
smartphones employees use, which may be personally owned devices.

While 2FA continues to grow in popularity, it is still rare to find it in the field, as seen
in Figure 24.

2FA was present and effective on only 15% of all engagements, with the remaining
85% of engagements unperturbed by this defensive strategy.

Vulnerability and Misconfiguration Management

As stated above, it is practically inevitable that an experienced penetration tester
will uncover at least one vulnerability or misconfiguration and use it to their
advantage. However, this should not cause IT, security, and development teams to
lose heart; there are strategies available to help minimize the impact of a breach,
both simulated by a penetration tester or caused by a real threat actor.

The number one issue that causes the most consternation among penetration
testers is solid network segmentation. If they cannot traverse logical boundaries
between environments, it can be extremely difficult to leverage a set of ill-gotten
workstation credentials to escalate to domain-wide administrative privileges; even
if a powerful service account has been compromised, if there’s no route between
targets, the pentester must effectively start over again with another foothold in the
network.

Speaking of those powerful service accounts, a principle of least-privilege can
help contain the damage suffered by losing control of that service account. IT
administrators should review the actual permission requirements for service
accounts and devise a non-root, non-administrator account permission scheme
that allows the service just enough privilege to perform its intended function.
If a particular product vendor insists that their software must have Domain
Administrator credentials, it’s worth a conversation with that vendor to discuss
which user permissions are minimally required. For Windows environments,
Microsoft Active Directory provides the “Protected Users” group, which should be
investigated to protect specifically against caching domain credentials on local
workstations. More on this strategy can be found in the excellent article by Jim
Shaver at <jimshaver.net/2016/02/14/defending-against-mimikatz/>.

127 (50.6%)

87 (34.7%)

37 (14.7%)Yes

Unsure / Couldn't tell

No

Source: Rapid7

Figure 24: Two-factor authentication across engagements
Not all engagements requested credential harvesting or compromising 2FA (n = 251)

2FA was present and
effective on only 15%

of all engagements,
with the remaining

85% of engagements
unperturbed by this

defensive strategy.

http://jimshaver.net/2016/02/14/defending-against-mimikatz/

32

It should go without saying that a robust vulnerability and patch management
solution should be employed at every organization. Many end-user systems today
are configured by default to check for and apply software patches automatically, but
some organizations are reluctant to employ the same strategy to business-critical
servers. While a patching routine may not necessarily be technically automatic for
these systems, it’s imperative that IT and security organizations work together to
ensure that patches are rolled out as quickly and seamlessly as practicable. Just as
shipping vulnerabilities is an inevitable consequence of general purpose computing,
patch and vulnerability management should be treated as equally inevitable and
routine procedures.

Socializing Security

Last but certainly not least, a culture of “see something, say something” should be
embraced in any organization. Implementation mistakes and security trade-offs
are the reality in today’s fast-paced, ever-changing networked world. This is not
just the responsibility of IT, security, and development staff, but for every user on
the network. Training end users to spot phishing campaigns, social engineering
operations, and other relatively low-tech attack techniques goes a long way to
extending the security team’s vision and reach. When a problem is spotted and
reported, the security team should be on point to not only address and mitigate the
issue, but to publicly and positively acknowledge the issue once it’s been mitigated.

Ultimately, if people are encouraged to report issues like this through positive
feedback, the dark, unmonitored corners of the network will shrink.

33

When it comes to a red team engagement, most customers have a hardened exterior,
and this customer was no exception. On a recent red team engagement, my colleague
Nick Sanzotta and I were tasked with a black box point of view, where no information
was given except for a company name. The customer challenged us to gain internal
access and obtain sensitive intellectual property (IP), while they would see if they were
able to detect and respond to a targeted attack. As with any red team exercise, only the
point of contact knew about the operation, where the defending blue team did not, so
the organization’s detection and response procedures would be put to the test.

As always, open source intelligence (OSINT) was the first stop, where we found a hard-
ened exterior complete with multi-factor authentication (MFA) requirements on most
logon interfaces.

Using an open MobileIron webpage, we started in with manual password guessing and
accessed a number of user accounts. But with MFA in place, we had no way to gain
internal access with the accounts. We instead discovered that access to the customer’s
Exchange Web Services (EWS) server was not protected by MFA. I used MailSniper to
connect to mailboxes, download the Global Address List (GAL), and access emails. I also
modified MailSniper to send email as users to perform internal phishing attempts.

After these attempts were unsuccessful, Nick called the customer Help Desk posing as a
user who was on vacation and needed access to the VPN. Nick stated he was at a funeral,
but needed access to OWA to respond to an important email. Nick spoke with the help
desk employee and gathered information which could be used in further calls. A while
later, after the first help desk personnel was off work, Nick called back, used the same
pretext along with the fresh information gathered, and asked for assistance. The help desk
employee was so helpful he gave Nick an account to use that would bypass the MFA
entirely and gain access to the VPN.

Once VPN access was achieved, we moved quickly to discover sensitive data by access-
ing email accounts with the earlier guessed passwords. In one of those email accounts, I
discovered a help desk ticket that included the machine name and IP address for a user
who had local administrative access granted on their laptop. I used this access to compro-
mise the user’s workstation and establish a Command and Control (C2) channel. I also
logged in to a Citrix server with user credentials obtained earlier in the engagement,
escaped the Citrix application sandbox due to lax configuration standards, and estab-
lished a more stable C2 channel due to the system being a high availability system.

We used these two systems to elevate privileges in the domain and exfiltrate ten giga-
bytes of data, including sensitive documentation on upcoming products. At no point
were Nick or I detected. 

ENGAGEMENT TYPE:
Red Team Engagement

VERTICAL:
Manufacturing

INVESTIGATORS:
Kirk Hayes and Nick Sanzotta

THIS ONE TIME ON A PENTEST:
GIVING IT ALL AWAY

34

APPENDIX A: METHODOLOGY

This report’s primary data source is a post-engagement survey answered by Rapid7 penetration testers from September of 2017
through mid-June of 2018. There were 268 total responses, but as with any survey, some engagement data points were not
captured completely. The complete survey is reproduced in Appendix B.

Target Demographics

In order to parse these results, it’s important to get a clear handle on what kinds of companies and organizations were tested
by Rapid7. Of course, the details of these organizations must remain confidential, but we can share broad, anonymized statistics
based on both the industries these client companies are involved in as well as the size of the tested organizations.

Target Industries

Figure 25 describes the industries that are represented by five or more organizations in this sample set , as well as how often
the companies in those industries were tested.

We can see from this data that most companies favor an annual penetration testing routine, regardless of industry.

58.3%

25%

57.4%

16.1%

21.4%

50.0%

53.8%

41.7%

32.6%

14.3%

16.7%

25%

23.4%

38.7%

32.1%

37.5%

30.8%

33.3%

20.9%

71.4%

16.7%

14.9%

19.4%

28.6%

12.5%

12.5%

9.3%

2.1%

16.1%

14.3%

7.7%

5.6%

4.7%

14.3%

2.1%

3.2%

4.2%

16.3%

8.3%

50%

6.5%

3.6%

7.7%

2.8%

16.3%

None, this was the first! Annually Semiannually Quarterly I don't know Other

Utilities & Energy

Technology

Services

Retail

Real Estate

Manufacturing

Healthcare

Finance

Education

Communications & Media

20%

40%

60%

Source: Rapid7

Figure 25: Penetration testing frequency by industry
Percentage value is number of engagements in industry

35

Target Sizes

Another way to cut the targeted organizations is by size. That chart is presented in Figure 26.

In total, there were 101 large companies, which have 1,000 or more employees, versus 154 small companies identified, so
our sample is skewed toward those smaller organizations which have fewer than 1,000 employees. Again, both sizes of
organizations tend to have penetration tests on an annual cycle, as opposed to quarterly, semiannually, or none until now.

37 (36.6%)

38 (37.6%)

13 (12.9%)

4 (4.0%)

9 (8.9%)

62 (40.3%)

57 (37.0%)

22 (14.3%)

6 (3.9%)

7 (4.5%)

Small

Large

None, this was the first!

Annually

Semiannually

Quarterly

I don't know

None, this was the first!

Annually

Semiannually

Quarterly

I don't know

Source: Rapid7

Figure 26: Penetration testing frequency by organization size
Percentage value is number of engagements in census org size group. Note free scale.

36

1. Was the penetration test internal or external? * (Mark only one oval.)

• Internal (Connected, physical, wifi, etc)
• External (Web, Phishing, VPN, etc)
• Mixed (Both internal and external elements)
• Neither (Code audit, IoT audit, etc)

2. How often is the client penetration tested? (Mark only one oval.)

• I don’t know
• None, this was the first!
• Annually
• Semiannually
• Quarterly

3. How many pentests has the client had, including this one? (Mark only one oval.)

• I don’t know
• None, this was the first!
• Two
• Three
• Four
• Five or more

4. How long was the engagement? (These should be calendar days, not person days. Mark only one oval.)

• One day or less
• One week / 40 hours
• Two weeks / 80 hours
• Three weeks / 120 hours
• Four weeks / 160 hours
• More than four weeks

5. How quickly were you detected? (Mark only one oval.)

• I was not detected. I am a ghost. A ninja. A ghost ninja.
• Within an hour of starting
• Within a day
• Within a week
• More than a week

6. What was the client interested in protecting?

• Check all that apply.
• Bank account data
• Classified information
• Copyrighted material
• Authentication credentials
• Digital certificate

APPENDIX B: PENETRATION TESTING EXIT SURVEY

37

• Sensitive internal data
• Medical records
• Payment card data
• Personal or identifying information
• Trade secrets
• Source code
• System configuration
• Virtual currency
• Unknown
• Something else

7. Were you able to obtain credentials? (Mark only one oval.)

• Yes
• No (Skip to question 14)

8. How did you gather usernames? (Check all that apply.)

• Guessing common usernames (jsmith, testuser)
• Linkedin, GitHub, forums, or other OSINT
• Anonymous enumeration of domain controller/LDAP, or other services
• Website enumeration (myBFF/Exchange timing/Password reset page)
• Document Metadata
• Some other method

9. How did you obtain passwords? (Check all that apply.)

• Manual guessing (Summer2018!)
• Guessable default account (admin/admin)
• Known default account (admin/cisco)
• Guessable, organization specific (CompanyName2018)
• Manual Social Engineering (e.g., phone call to tech support)
• Automated Social Engineering (e.g., phishing with an executable payload)

• Disclosed in plaintext (source code, accessible FTP sites, etc)
• Disclosed from storage (passwords.xls)
• Disclosed from privileged storage (/etc/shadow, pass-the-hash)
• Disclosed from 3rd party password dump (pastebin)
• Disclosed from network challenge-response traffic
• Man-in-the-middle
• Some other method

10. How effective were account lockouts? (Check all that apply.)

• There were no account lockouts
• Account lockouts had no effect
• It made things take longer
• It got me detected
• It prevented me from using auth attacks
• It locked out legitimate users
• It disrupted services due to service account lockout

38

11. Did you compromise privileged accounts? (Mark only one oval.)

• Yes
• No (Skip to question 14)

12. Did you gain Domain Admin or the equivalent of site-wide root? (Mark only one oval.)

• Yes
• No

13. How did you find privileged accounts? (Check all that apply.)

• Guessed variant of admin/administrator/root
• Enumeration of group memberships via anon/auth DC/LDAP enumeration
• Cached credentials
• Some other method
• Two-Factor Authentication

14. Was two-factor enabled in the domain? (Mark only one oval.)

• Yes
• No (Skip to question 17)
• Unsure / Couldn’t tell (Skip to question 17)

15. Were you able to bypass or compromise 2FA? (Mark only one oval.)

• Yes
• No (Skip to question 17)

16. How did you compromise 2FA? (Check all that apply.)

• Email intercept
• SMS intercept
• Visual intercept (shoulder surf)
• Physical device theft (phone, yubikey, etc)
• Some other method

17. What misconfigurations did you leverage? (Check all that apply.)

• None
• Default account access
• Lack of least-privilege principles for accounts
• Service accounts as Domain Administrators
• Lack of network segmentation
• Outdated / stale firewall rules
• Lack of patch management
• Service misconfiguration
• Lack of detection controls
• Password reuse
• Some other misconfiguration or practice

39

18. What kinds of vulnerabilities did you encounter? (Check all that apply.)

• None. Good for them!
• SQLi
• XSS
• CSRF / Clickjacking
• DoS
• Local privilege escalation
• Memory corruption
• Third-party 0day
• Locally site-specific 0day
• Group Policy Preferences
• SMB relaying
• Citrix breakout
• Broadcast name resolution

• Some other vulnerability
• Exploits Used

19. What exploits did you use? (Check all that apply.)

• None
• Well-known exploits (Metasploit, sqlmap, PoCs from exploit-db, etc)
• Bespoke code (tool you wrote during this or another engagement)
• Manual command line exploitation (typing on a bash or cmd prompt)

20. Were you able to collect any confidential data? (Mark only one oval.)

• Yes
• No (Skip to question 22)

21. What kinds of data did you acquire? (Check all that apply.)

• PII (Personally identifying information)
• PHI (Personal health information)

22. IP (Intellectual property or trade secrets)

• Financial data
• PCI (Payment card industry)
• Other:

23. Final thoughts

• Was there anything about your findings that we missed with these questions that you want to capture?

• Were there misconfigurations, vulns, or credential types that we didn’t cover that we should?

• Any other feedback about your findings that you want to save here for posterity? (Remember, please leave customer
names out of your free-text answer).

40

ABOUT RAPID7 GLOBAL CONSULTING

Rapid7 powers SecOps not only through technology, but also by giving you access
to experts who provide peace of mind, clarity and guidance to your program. Our
managed and consulting services extend the reach of your team, while our industry
research, reports, and open source tools constantly feed the Insight platform—and
you—with new insights.

Our practitioners have extensive experience building and managing security
programs, with expertise in vulnerability management, fraud detection, penetration
testing, threat intelligence, incident response, red team programs, and more.

Learn more about Rapid7 services at www.rapid7.com/services.

ABOUT RAPID7

Rapid7 powers the practice of SecOps by delivering shared visibility, analytics, and
automation that unites security, IT, and DevOps teams. The Rapid7 Insight platform
empowers these teams to jointly manage and reduce risk, detect and contain
attackers, and analyze and optimize operations. Rapid7 technology, services, and
research drive vulnerability management, application security, incident detection
and response, and log management for organizations around the globe. To learn
more about Rapid7 or get involved in our threat research, visit www.rapid7.com.

http://www.rapid7.com/services
https://www.rapid7.com

QUESTIONS?
Email us at research@rapid7.com

mailto:research%40rapid7.com?subject=

